If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2+9=289
We move all terms to the left:
7b^2+9-(289)=0
We add all the numbers together, and all the variables
7b^2-280=0
a = 7; b = 0; c = -280;
Δ = b2-4ac
Δ = 02-4·7·(-280)
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{784*10}=\sqrt{784}*\sqrt{10}=28\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{10}}{2*7}=\frac{0-28\sqrt{10}}{14} =-\frac{28\sqrt{10}}{14} =-2\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{10}}{2*7}=\frac{0+28\sqrt{10}}{14} =\frac{28\sqrt{10}}{14} =2\sqrt{10} $
| .7x=3.75 | | x2-3x+44=-3x+5 | | -6+a=-15 | | q^2=10 | | .7Xx=3.75 | | 2+4x+9x+22=180 | | 14x-25=-12x+85 | | (x-20)+(2x-111)+((1/2)x+10)=180 | | 3x(9x+12)=180 | | x-20=x+10 | | q+q+q+q+q=q+6 | | 4m+12=-8+m | | k÷-8=2 | | -6=h/2-10 | | 39x+3+19x+3=180 | | 6x+44+-10x+65=89 | | 6.4x-2.3x=73,8 | | 34x12=104 | | 500+0.075x=0.1x | | (9/15)g=-(45/15) | | 1/3p-5=11 | | y=6y+24 | | 6x+x^2=114 | | 5n-7=4n-1 | | 500+7.5x=10x | | 4x2–25=0 | | (x+1)(x-1)=x-1 | | 4d+5/7=-9 | | 2x+15=6x+45 | | 60+12p=14(p+6)10 | | 7/4u=50 | | -5(3x+1)=65 |